O-IEVEL MATTRMATCOS PASSHORD

 FROM TIIT YFER 2000 T0 2015
O-LEVEL REB PAST PAPERS WITH ANSWERS

Education's purpose is to replace an empty mind with an open one. Live and enjoy Mathematics by constant practice from these well prepared REB past paper questions with answers at the back. Remember it's not how good you are, it's how good you want to be.

ORDINARY LEVEL NATIONAL EXAMINATIONS, 2015

SUBJECT: MATHEMATICS I

DURATION : 3 HOURS

INSTRUCTIONS:

1. Write your names and index number on the answer booklet as they appear on your registration form and DO NOT write your names and index number on additional answer sheets of paper if provided.
2. Do not open this question paper until you are told to do so.
3. This paper has TWO sections A and B. ${ }^{*}$

- SECTION A: Attempt ALL questions.
- SECTION B: Attempt any THREE questions

4. You may use mathematical instruments and calculators where necessary.
5. Use a blue or black ink pen only to write your answer and a pencil to draw diagrams.
6. Show clearly all the working. Marks will not be awarded for the answer without all working steps.

SECTION A: ATTEMPT ALL QUESTIONS. (55 MARKS)

1) Given that $a * b=2 b+a-1$, evaluate $4 *(3 * 5)$.
2) Given that $\mathrm{a}=-2, \mathrm{~b}=3$ and $\mathrm{c}=-1$, calculate the value of $\frac{4 \mathrm{a}^{2}-\mathrm{ac}^{3}}{b+c}$
3) Calculate the magnitude of the vector $\vec{x}=\left[\begin{array}{c}24 \\ -7\end{array}\right]$.
4) Given that y is inversely proportional to x^{2} and that $\mathrm{y}=4$ when $\mathrm{x}=2$, calculate the value of y when $x=\frac{1}{2}$.
5) Find the equation of a line which passes through points $(1,2)$ and $(3,6)$.
6) Solve in the set of real numbers, $\mathrm{R}: \frac{25}{9} x^{2}-\frac{9}{4}=0$.
7) If $135_{n}=75_{\text {ten }}$, find the value of n.
8) Given that vectors $\vec{a}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \vec{b}=\left[\begin{array}{c}2 \\ -7\end{array}\right]$ and $\vec{c}=\left[\begin{array}{c}-10 \\ 21\end{array}\right]$;
(a) Find vector $2 \vec{a}+\vec{b}$.
(b) If $m \vec{a}+n \vec{b}=\vec{c}$, find the value of m and n. show all your working.
9) In the figure below,
(a) show that $\triangle A B C$ is similar to $\triangle B D C$.

(b) Calculate x .
10) The sum of two numbers is at most 48 . If one number is two times the other, find the maximum possible values of the two numbers.
11) (a) Simplify completely without using a calculator:

$$
\left[2^{-3} \times 16^{1 / 2}\right] \div\left[81^{3 / 4} \times 27^{-1 / 3}\right]
$$

(b) Find x if $3^{x} \div 3^{2}=27$.
12) Three students share n frw in the ratio $3: 4^{\prime}: 5$. If the smallest share is $60,000 \mathrm{frw}$, ". find:
(a) The amount n .
(b) The two other shares.
13) It is given that $\mathrm{f}(\mathrm{x})=\frac{k}{x+2}$ and $\mathrm{f}(6)=6$. Find $\mathrm{f}(-14)$.
14) A line with gradient 3 passes through the point $A(-2,-3)$.

Find out:
(a) The equation of the line.
(b) The coordinates of points where the line cuts the x - axis.
15) Copy the sketch below and draw the image of line $A B$;

(a) Under a reflection in y - axis.
(b) Under a translation $\mathrm{T}=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$.

SECTION B: ATTEMPT ONLY THREE QUESTIONS. (45 MARKS)

16) (a) The table below shows the direct variation between time and distance covered by a man travelling at a constant speed.

Time(t) in hours	1	4	5	6
Distance(d) in km	4	16	\cdot	\cdot

(8 marks)
(i) Copy and complete the table.
(ii) Plot d against t on the graph
(iii) Determine the gradient of the graph
(iv) Write the equation relating d and t .
(b) A vector comprises points $A(2,3)$ and $B(1,6)$. Another vector perpendicular to the vector $A B$ passes through points $A(2,3)$ and $P(x, y)$. Find the coordinates of point P.
(c) A line L1 passes through points $P(2,1)$ and $Q(-1,-4)$. Another line L2 passes through point $(3,-6)$. If the lines L1 and L2 are parallel, find the equation of L2.
17) The polynomial $p(x)=x^{3}-5 x^{2}+b x+a$ is divisible by $(x+1)$ and leaves a remainder of 6 when it is divided by $(x-1)$.
(a) Find the values of the coefficients a and b.
(b) Hence solve $p(x)=0$.
18) (a) The internal radius of a cylindrical water tank is 60 cm . the depth of water in the tank is 1.4 m . Calculate the volume of the water. Express the answer in litres. Use $\pi=\frac{22}{7}$.
(b) Find the surface area and volume of the figure below. (use $\pi=3.14$).

(c) A path 15 m long and 12 m wide is to be covered with square tiles of side 20 cm .

Calculate: (i) the number of tiles needed.
(ii) the cost of tiles if 1 tile costs 400 frw .
19) In a class of 36 students, 23 like mathematics, 15 like Physics and 13 like Chemistry. 7 students like Mathematics and Physics, 9 like Mathematics and Chemistry and 6 like Physics and Chemistry. Two of the students do not like any of the subjects.
(a) Represent this information on a Venn diagram. Find the number of students who like all the three subjects.
(b) How many students like only one of the three subjects?
20) The table below shows the marks of 51 students in a science test

10	20	12	23	13	21	14	32	18	30	36	40	37	46	38	31	41	44
32	42	48	44	39	35	48	40	34	41	37	47	34	49	50	43	16	52
45	51	58	57	59	56	55	60	53	62	64	54	65	68	76			

(a) Make a grouped frequency table for marks starting with 10-19
(b) Calculate the mean mark.
(c) What is the modal class?

END

MATHEMATICS I MARKING SCHEME, ORDINARY LEVEL NATIONAL EXAMINATIONS, 2015 SECTION A

1. | $\mathrm{a} * \mathrm{~b}=$ | $2 \mathrm{~b}+\mathrm{a}-1$ |
| ---: | :--- |
| $4^{*}\left(3^{*} 5\right)$ | $=4^{*}[(2 \times 5)+3-1]$ |
| | $=4^{\star} 12$ |
| | $=(2 \times 12)+4-1$ |
| $\therefore \quad$ | $=27$ |

$$
\text { 2. } \begin{aligned}
\frac{4 \mathrm{a}^{2}-\mathrm{ac}^{3}}{b+c} & =\frac{4(-2)^{2}-(-2)(-1)^{3}}{3+(-1)} \\
& =\frac{4 \times 4-(-2)(-1)}{2} \\
& =\frac{16-2}{2} \\
& =\frac{14}{2}=7
\end{aligned}
$$

3.

$$
\begin{aligned}
\vec{x} & =\sqrt{24^{2}+(-7)^{2}} \\
& =\sqrt{576+49} \\
& =\sqrt{625}=25
\end{aligned}
$$

4. $\mathrm{y} \propto \frac{1}{x^{2}} \Rightarrow \mathrm{y}=\frac{k}{x^{2}}$

When $\mathrm{y}=4, \mathrm{x}=2$, then $4=\frac{k}{(2)^{2}}$ i.e $\mathrm{k}=16$
The equation is $\mathrm{y}=\frac{16}{x^{2}}$
When $\mathrm{x}=\frac{1}{2}, \mathrm{y}=\frac{16}{\left(\frac{1}{2}\right)^{2}}=16 \times 4=64$
5. Gradient of line $=\frac{6-2}{3-1}=2$

Let (x, y) be any point on the line,
then $\frac{y-2}{x-1}=2$ 。
$\mathrm{y}-2=2 \mathrm{x}-2$ $y=2 x$
The required equation is $\mathbf{y}=\mathbf{2 x}$
6. $\frac{25}{9} x^{2}-\frac{9}{4}=0 ; \quad\left[\frac{5}{3} x-\frac{3}{2}\right]\left[\frac{5}{3} x+\frac{3}{2}\right]=0$
$\frac{5}{3} x-\frac{3}{2}=0$ or $\frac{5}{3} x+\frac{3}{2}=0$
$x=\frac{3}{2} \times \frac{3}{5}=\frac{9}{10}=0.9$
Or $\mathrm{x}=-\frac{3}{2} \times \frac{3}{5}=-\frac{9}{10}=-0.9$
8. a)

$$
2 \vec{a}+\vec{b}=2\left[\begin{array}{r}
-2 \\
3
\end{array}\right]+\left[\begin{array}{r}
2 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-4 \\
6
\end{array}\right]+\left[\begin{array}{r}
2 \\
-7
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-
\end{array}\right]
$$

b) $\mathrm{m} \vec{a}+\mathrm{n} \vec{b}=\vec{c}, \mathrm{~m}\left[\binom{-2}{3}\right]+\mathrm{n}\left[\binom{2}{-7}\right]=\binom{-10}{21}$

$$
\begin{gather*}
\binom{-2 m}{3 m}+\binom{2 n}{-7 n}=\binom{-10}{21} \\
-2 m+2 n=-10 \ldots \ldots(1) \tag{1}\\
3 m-7=21 \ldots \ldots \ldots(2) \tag{2}
\end{gather*}
$$

$\times 3+(2) \times 2:-6 m+6 m+6 n-14 n=-30+42$ $-8 \mathrm{n}=12$ and $\mathrm{n}=-\frac{3}{2}=-1.5$
$\mathrm{m}=\frac{21-\frac{21}{2}}{3}=\frac{21}{6}=\frac{7}{2}=3.5$
7. $1355_{n}=1 \times n^{2}+3 \times n^{1}+5 \times n^{0}$

$$
=n^{2}+3 n+5
$$

$$
\text { So } n^{2}+3 n+5=75 ; n^{2}+3 n-70=0
$$

$$
\begin{aligned}
& \left(n^{2}+10 n\right)-(7 n+70)=0 \\
& (n+10)(n-7)=0 \\
& n+10=0(N / A)-\text { Not Applicable } \\
& \text { or } n-7=0 \text {, i.e } n=7 \\
& \text { Therefore, the value of } \mathbf{n}=7
\end{aligned}
$$

9. a) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$:

Angle $\mathrm{ABC}=$ angle $\mathrm{BDC}=90^{\circ}$
Angle $\mathrm{BCA}=$ angle BCD
Therefore $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{BDC}$.
b) $(x+9)^{2}=(12)^{2}+(16)^{2}$

$$
\begin{gathered}
(x+9)^{2}=144+256 \\
x+9=\sqrt{400}=20 \\
x=11 \mathbf{c m}
\end{gathered}
$$

10. a) At most means maximum use inequality \leq
Let x be the $1^{\text {st }}$ number
$2^{\text {nd }}$ is two times x or 2 x
The sum of the two numbers cannot exceed 48 .
So $2 x+x \leq 48$
$3 x \leq 48$
$x \leq 16$
the first number, $x=16$
the $2^{\text {nd }}$ number $2 \mathrm{x}=2 \times 16=32$.
11. a) Total parts $=3+4+5=12$

The amount $\mathrm{n}=\frac{12}{3} \times 60,000 \mathrm{Frw}$
$=240,000 \mathrm{Frw}$
b) Other shares: (i) $\frac{4}{3} \times 60,000=80,000 \mathrm{Frw}$

$$
\text { ii) } \frac{5}{3} \times 60,000 \mathrm{Frw}=100,000 \mathrm{Frw}
$$

14. Let $\mathrm{B}(\mathrm{x}, \mathrm{y})$ be any point on the line, then the gradient of $\mathrm{AB}=\frac{Y-(-3)}{X-(-2)}=\frac{Y+3}{X+2}$
a) Therefore, $\frac{Y+3}{x+2}=3$.

$$
\begin{aligned}
y+3 & =3(x+2) \\
y+3 & =3 x+6 \\
y & =3 x+6-3 \\
y & =3 x+3
\end{aligned}
$$

11. a) $\left[2^{-3} \times 16^{1 / 2}\right] \div\left[81^{3 / 4} \times 27^{-1 / 3}\right]$
$=2^{-3} x$
b) $3^{x} \div 3^{2}=27 ; 3^{x-2}=3^{3}$
$x-2=3$
$x=5$
12. $\mathrm{f}(6)=\frac{k}{6+2}=\frac{k}{8}$

$$
\mathrm{f}(6)=6=\frac{k}{8}
$$

$$
k=48
$$

So $\mathrm{f}(\mathrm{x})=\frac{48}{x+2} ; \quad \mathrm{f}(-14)=\frac{48}{-14+2}=-4$
14. b) The line cuts the x-axis where $y=0$
$3 x+3=0$
$3 \mathrm{x}=3$
$x=\frac{-3}{3}$
$x=-1$
the line cuts the x -axis at points $(-1,0)$
15. a)

SECTION B

16. a) i)

Time(t) in hours	1	4	5	6
Distance(d) in km	4	16	20	24

ii) Graph

iii) Gradient $=\frac{y 2-y 1}{x 1-x 2}=\frac{16-4}{4-1}=\frac{12}{3}=4$
iv) Equation: $d=4 t$
17. a) $p(x)=x^{3}-5 x^{2}+b x+a$
$p(x)$ is divisible by $x+1 \Rightarrow p(-1)=0$
i.e $-1-5-b+a=0$ or $a-b=6$..(i)

The remainder of the division of $p(x)$ by $x-1=6$
$p(1)=1-5+b+a=6$ or $a+b=10 \ldots$ (2)
$(1)+(2) \Rightarrow 2 a=16$
$a=8, b=2$
16. b) The two vectors share a common point $A(2,3)$, so think of the other points $B(1,6)$

$$
\vec{a}=\binom{-a x}{a y}
$$

$$
\text { So }\binom{x}{y}=\binom{-1}{6} \text { or } \mathrm{P}(-1,6)
$$

c) As the lines L1 and L2 are parallel, they have the same gradient equal to:
$\frac{-4-1}{-1-2}=\frac{-5}{-3}=\frac{5}{3}$
The equation of $L 2$ must be of the form:
$y=\frac{5}{3} x+c \ldots$ (i)
Use the given point $(3,-6)$ to find the value of y intercept c , so substitute into (i)
$-6=\frac{5}{3} x+c$
$-6=5+c$
$c=6-5$
$c=-11$
therefore L2 has an equation $y=\frac{5}{3} x=11$
17. b) $p(x)=0$
$x^{3}-5 x^{2}+2 x+8=0$ i.e $(x+1)\left(x^{2}-6 x+8\right)=0$
or $(x+1)(x-2)(x-4)=0$
$\mathrm{x}=-1$
or $x=2$
or $\mathrm{x}=4$

18. a) Volume, $V=\pi r^{2} h$ $\begin{aligned} & =\frac{22}{7} \times 60^{2} \times 140 \mathrm{~cm}^{3} \\ & =1,584,000 \mathrm{~cm}^{3} \\ & =1,584 \text { litres. } \end{aligned}$	18. b) The 3D shape consists of three parts: conical part, cylindrical part and hemispherical part. $\begin{aligned} \checkmark-\text { Conical part: slant height, } \begin{aligned} 1 & =\sqrt{5^{2}+3^{2}} \\ & =5.83 \mathrm{~cm} \\ - \text { surface area }= & \pi \mathrm{rl}=3.14 \times 3 \times 5.83 \\ = & 54.92 \mathrm{~cm}^{2} \end{aligned} \end{aligned}$
Volume: Cone: $V=1 / 3 \pi r^{2} h=1 / 3 \times 3.14 \times 9 \times 5=47.1 \mathrm{~cm}^{3}$ Cylinder: $V=\pi r^{2} \mathrm{~h}=3.14 \times 9 \times 8=226.08 \mathrm{~cm}^{3}$ Hemisphere: $V=2 / 3 \pi r^{3}=\frac{2}{3} \times 3.14 \times 27=56.52 \mathrm{~cm}^{3}$ $\begin{aligned} \text { Total volume } & =47.1+226.08+56.52 \\ & =329.7 \mathrm{~cm}^{3} \end{aligned}$	Cylindrical part: - Height, $\mathrm{h}=16 \mathrm{~cm}-(5 \mathrm{~cm}+3 \mathrm{~cm})=8 \mathrm{~cm}$ - Curved surface are $=2 \pi \mathrm{rh}=3.14 \times 6 \times 8$ $=150.72 \mathrm{~cm}^{2}$ \checkmark Hemisphere part: $\begin{aligned} \text { Surface area }=2 \pi \mathrm{r}^{2} & =2 \times 3.14 \times 3^{2}=56.52 \mathrm{~cm}^{2} \\ \text { Total surface area } & =54.92+150.72+56.52 \\ & =\mathbf{2 6 2 . 1 6} \mathrm{cm}^{2} \end{aligned}$
$\begin{aligned} & \text { 18. c) i) Area of the path }=15 \mathrm{~m} \times 12 \mathrm{~m}=180 \mathrm{~m}^{2} \\ & \text { Area of one tile }=0.2 \mathrm{~m} \times 0.2 \mathrm{~m}=0.04 \mathrm{~m}^{2} \\ & \text { Number of tiles needed }=\frac{180 \mathrm{~m}^{2}}{0.04 \mathrm{~m}^{2}}=4500 \text { tiles } \end{aligned}$	$\text { ii) } \begin{aligned} \text { Cost of tiles } & =4500 \times 400 \mathrm{frw} \\ & =\mathbf{1 , 8 0 0 , 0 0 0 f r w} \end{aligned}$
19. a) Let Mathematics be M, Physics be P, Chem E	try be C and all students be E
Let x be the number of all students who like all th $\mathrm{a}=23-(7-\mathrm{x}+\mathrm{x}+9-\mathrm{x})=23-16+\mathrm{x}=7+\mathrm{x}$ $\mathrm{b}=15-(7-\mathrm{x}+\mathrm{x}+6-\mathrm{x})=15-13+\mathrm{x}=2+\mathrm{x}$ $\mathrm{c}=13-(9-\mathrm{x}+\mathrm{x}+6-\mathrm{x})=13-15+\mathrm{x}=\mathrm{x}-2$	three subjects.
$n(E)=7+x+7-x+9-x+x+2+x+x-2+2=36$	
$31+x=36$	
$x=36-31=5$	
The number of students who like all the three subjects is 5	
b) The number of students who like only one of the subjects $=a+b+c=(7+x)+(2+x)+(x-2)$. $=7+3 \mathrm{x} \Rightarrow 7+3(5)=\mathbf{2 2}$	

20. a)

Marks	Frequency ($\mathbf{f})$	Midpoints (x)	$\mathbf{f x}$
$\because 10-19$	6	14.5	87
$20-29$	3	24.5	735
$30-39$	12	34.5	414
$40-49$	14	44.5	623
$50-59$	10	54.5	545
$60-69$	5	64.5	322.5
$70-79$	1	74.5	74.5
	$\sum \mathrm{f}=51$		$\sum \mathrm{fx}=2139.5$

b) The mean mark, $\bar{x}=\frac{\sum f x}{\Sigma f}=\frac{2139.5}{51}=41.95$
c) The modal class is $40-49$ because it has a higher frequency of 14 than others.

