

Education's purpose is to replace an empty mind with an open one. Live and enjoy Mathematics by constant practice from these well prepared REB past paper questions with answers at the back. Remember it's not how good you are, it's how good you want to be.

010

11/11/2015

08.30AM - 11.30AM

ORDINARY LEVEL NATIONAL EXAMINATIONS, 2015

SUBJECT: MATHEMATICS I

DURATION : 3 HOURS

INSTRUCTIONS:

- 1. Write your names and index number on the answer booklet as they appear on your registration form and **DO NOT** write your names and index number on additional answer sheets of paper if provided.
- 2. Do not open this question paper until you are told to do so.
- 3. This paper has **TWO** sections **A** and **B**.
 - SECTION A: Attempt ALL questions.

• SECTION B: Attempt any THREE questions

- 4. You may use mathematical instruments and calculators where necessary.
- 5. Use a blue or black ink pen only to write your answer and a pencil to draw diagrams.
- 6. Show clearly all the working. Marks will not be awarded for the answer without all working steps.

(55 marks)

(30 marks)

SECTION A: ATTEMPT ALL QUESTIONS. (55 MARKS)

1) Given that $a^*b = 2b + a - 1$, evaluate $4^*(3^*5)$.	(3 marks
2) Given that a = -2, b = 3 and c = -1, calculate the value of $\frac{4a^2-ac^3}{b+c}$	(3 marks
3) Calculate the magnitude of the vector $\vec{x} = \begin{bmatrix} 24 \\ -7 \end{bmatrix}$.	(3 marks
4) Given that y is inversely proportional to x^2 and that $y = 4$ when $x = 2$, calculat the value of y when $x = \frac{1}{2}$.	e (3 marks)
5) Find the equation of a line which passes through points $(1, 2)$ and $(3, 6)$.	(3 marks
6) Solve in the set of real numbers, R : $\frac{25}{9}\chi^2 - \frac{9}{4} = 0$.	(3 marks
7) If $135_n = 75_{ten}$, find the value of n.	(4 marks
8) Given that vectors $\vec{a} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 2 \\ -7 \end{bmatrix}$ and $\vec{c} = \begin{bmatrix} -10 \\ 21 \end{bmatrix}$;	
(a) Find vector 2 \vec{a} + \vec{b} .	(2 marks)
(b) If $m\vec{a} + n\vec{b} = \vec{c}$, find the value of m and n. show all your working.	(3 marks
9) In the figure below, (a) show that $\triangle ABC$ is similar to $\triangle BDC$.	(2 marks
B A	-
12cm 16cm	· ·

(b) Calculate x.

10) The sum of two numbers is at most 48. If one number is two times the other, find the maximum possible values of the two numbers.

 $-9 \text{cm} \longrightarrow D \leftarrow x \text{cm} \longrightarrow C$

11) (a) Simplify completely without using a calculator:

$$\left[2^{-3} \times 16^{\frac{1}{2}}\right] \div \left[81^{\frac{3}{4}} \times 27^{-\frac{1}{3}}\right]$$

(b) Find x if $3^x \div 3^2 = 27$.

12) Three students share n frw in the ratio 3 : 4^{*}: 5. If the smallest share is 60,000 frw, ^{*-} find:

- (a) The amount n.
 - (b) The two other shares.

(2 marks (2 marks

(2 marks

(4 marks

13) It is given that $f(x) = \frac{k}{x+2}$ and f(6) = 6. Find f(-14).

- 14) A line with gradient 3 passes through the point A (-2, -3). Find out:
 - (a) The equation of the line.
 - (b) The coordinates of points where the line cuts the x axis.
- 15) Copy the sketch below and draw the image of line AB;

- (a) Under a reflection in y axis.
- (b) Under a translation $T = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$.

SECTION B: ATTEMPT ONLY THREE QUESTIONS. (45 MARKS)

16) (a) The table below shows the direct variation between time and distance covered by a man travelling at a constant speed.

Time(t) in hours	1	4	5	6
Distance(d) in km	4	16	A	

- (i) Copy and complete the table.
- (ii) Plot d against t on the graph
- (iii) Determine the gradient of the graph
- (iv) Write the equation relating d and t.
- (b) A vector comprises points A (2, 3) and B (1, 6). Another vector perpendicular to the vector AB passes through points A (2, 3) and P (x, y). Find the coordinates of point P.
- (c) A line L1 passes through points P (2, 1) and Q (-1, -4). Another line L2 passes through point (3, -6). If the lines L1 and L2 are parallel, find the equation of L2.
- 17) The polynomial $p(x) = x^3 5x^2 + bx + a$ is divisible by (x + 1) and leaves a remainder of 6 when it is divided by (x 1).
 - (a) Find the values of the coefficients a and b.
 - (b) Hence solve p(x) = 0.

(10 marks) (5 marks

(4 marks

(4 marks

(2 marks (1 mark

(2 marks

(2 marks

(8 marks)

18) (a) The internal radius of a cylindrical water tank is 60cm. the depth of water in the tank is 1.4m. Calculate the volume of the water. Express the answer in

litres. Use
$$\pi = \frac{22}{7}$$
. (3 marks)

(b) Find the surface area and volume of the figure below. (use $\pi = 3.14$).

(c) A path 15m long and 12m wide is to be covered with square tiles of side 20cm.

- Calculate: (i) the number of tiles needed. (ii) the cost of tiles if 1 tile costs 400frw.
- 19) In a class of 36 students, 23 like mathematics, 15 like Physics and 13 like Chemistry. 7 students like Mathematics and Physics, 9 like Mathematics and Chemistry and 6 like Physics and Chemistry. Two of the students do not like any of the subjects.
 - (a) Represent this information on a Venn diagram. Find the number of students who like all the three subjects.

(11 marks) _ (4 marks)

(3 marks)

(1 mark)

(8 marks)

20) The table below shows the marks of 51 students in a science test,

(b) How many students like only one of the three subjects?

	and the second s															000 000	12.124	1.00	
	10	20	12	23	13	21	14	32	18	30	36	40	37	46	38	31	41	44	
÷,	32	42	48	44	39	35	48	40	34	41	37	47	34	49	50	43	16	52	
	45	51	58	57	59	56	55	60	53	62	64	54	65	68	76				
	(a) M	lake a	a gro	uped	frequ	ency	table	for n	narks	start	ting v	vith 1	0 - 19	9			•	2 mar	
	(b) C	alcul	ate tl	ne me	ean m	ark.												2 mar	ks)
	(c) W	/hat i	is the	mod	al cla	ss?												(1 ma:	rk)

END

MATHEMATICS I MARKING SCHEME, ORDINARY LEVEL NATIONAL EXAMINATIONS, 2015 SECTION A

1. $a^*b = 2b + a - 1$ 2. $\frac{4a^2 - ac^3}{a} = 1$	$\frac{4(-2)^2 - (-2)(-1)^3}{3 + (-1)} \begin{array}{c} 3. \\ \vec{x} = \sqrt{24^2 + (-7)^2} \end{array}$
	$3 + (-1) \qquad \vec{x} = \sqrt{24^2 + (-7)^2}$
= 4*12	$\frac{4 \times 4 - (-2)(-1)}{2} = \sqrt{576 + 49}$
$-(2 \land 12) + 4 - 1$	2
= 27	$\frac{16-2}{2}$ = $\sqrt{625}$ = 25
	$\frac{14}{2} = 7$
1 7-	
4. $y \propto \frac{1}{x^2} \Rightarrow y = \frac{k}{x^2}$ 5.	Gradient of line = $\frac{6-2}{3-1} = 2$
	Let (x, y) be any point on the line,
When y = 4, x = 2, then $4 = \frac{\kappa}{(2)^2}$ i.e k = 16	then $\frac{y-2}{x-1} = 2$.
The equation is $y = \frac{16}{r^2}$	x-1
~	y - 2 = 2x - 2 $y = 2x$
When $x = \frac{1}{2}$, $y = \frac{16}{\left(\frac{1}{2}\right)^2} = 16 \times 4 = 64$	y - 2x The required equation is $y = 2x$
6. $\frac{25}{9}x^2 - \frac{9}{4} = 0; \left[\frac{5}{3}x - \frac{3}{2}\right]\left[\frac{5}{3}x + \frac{3}{2}\right] = 0$	7. $135_n = 1 \times n^2 + 3 \times n^1 + 5 \times n^0$
$\begin{bmatrix} 0 & - & - & 0 \\ - & - & - & 0 \\ 0 & - & - & - & - & 0 \\ 0 & - & - & - & - & 0 \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - & - \\ 0 & - & - & - & - & - & - & - & - & - &$	$= n^2 + 3n + 5$
$\frac{5}{3}x - \frac{3}{2} = 0 \text{ or } \frac{5}{3}x + \frac{3}{2} = 0$	So $n^2 + 3n + 5 = 75$; $n^2 + 3n - 70 = 0$
5, 2	$(n^2 + 10n) - (7n + 70) = 0$
$x = \frac{3}{2} \times \frac{3}{5} = \frac{9}{10} = 0.9$	(n + 10)(n-7) = 0
	n + 10 = 0 (N/A) – Not Applicable
Or $x = -\frac{3}{2} \times \frac{3}{5} = -\frac{9}{10} = -0.9$	or $n - 7 = 0$, i.e $n = 7$ Therefore, the value of $n = 7$
8. a)	Therefore, the value of $\mathbf{n} = 7$ 9. a) In \triangle ABC and \triangle BDC:
$2 \vec{a} + \vec{b} = 2 \begin{bmatrix} -2 \\ -2 \\ -7 \end{bmatrix} + \begin{bmatrix} 2 \\ -7 \end{bmatrix} = \begin{bmatrix} -4 \\ -6 \end{bmatrix} + \begin{bmatrix} 2 \\ -7 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$	Angle ABC = angle BDC = 90°
	Angle BCA = angle BCD
b) $\mathbf{m}\vec{a} + \mathbf{n}\vec{b} = \vec{c}, \ \mathbf{m}\left[\begin{pmatrix}-2\\3\end{pmatrix}\right] + \mathbf{n}\left[\begin{pmatrix}2\\-7\end{pmatrix}\right] = \begin{pmatrix}-10\\21\end{pmatrix}$	Therefore \triangle ABC is similar to \triangle BDC.
(-2m) $(2n)$ (-10)	
$\binom{-2m}{3m} + \binom{2n}{-7n} = \binom{-10}{21}$	b) $(x + 9)^2 = (12)^2 + (16)^2$
-2m + 2n = -10(1)	$(x + 9)^2 = 144 + 256$
3m - 7 = 21(2)	$x + 9 = \sqrt{400} = 20$
$\times 3 + (2) \times 2$: - 6m + 6m + 6n - 14n = -30 + 42	x = 11cm
$-8n = 12 \text{ and } n = -\frac{3}{2} = -1.5$	
$21 - \frac{21}{2}$ 21 7	
$m = \frac{21 - \frac{21}{2}}{3} = \frac{21}{6} = \frac{7}{2} = 3.5$	

Page **5** of **131**

1

10. a) At most means maximum use	11. a) $2^{-3} \times 16^{\frac{1}{2}} \div 81^{\frac{3}{4}} \times 27^{-\frac{1}{3}}$
inequality \leq Let x be the 1 st number	
2^{nd} is two times x or 2x	$= 2^{-3} \times$
The sum of the two numbers cannot exceed 48	
So $2x + x \le 48$	`~
$3x \leq 48$	
$x \le 16$	b) 2^{x} : 2^{2} - 0^{7} : 2^{x-2} - 2^{3}
the first number, $x = 16$	b) $3^x \div 3^2 = 27$; $3^{x-2} = 3^3$
the 2^{nd} number $2x = 2 \times 16 = 32$.	x - 2 = 3
	x = 5
12. a) Total parts = $3 + 4 + 5 = 12$	13. $f(6) = \frac{k}{6+2} = \frac{k}{8}$
The amount $n = \frac{12}{3} \times 60,000$ Frw	· · 6+2 8
5	$f(6) = 6 = \frac{k}{8}$
= 240,000Frw	
b) Other shares: (i) $\frac{4}{3} \times 60,000 = 80,000$ Frw	k = 48
b) Other shares. (i) $\frac{-1}{3} \times 00,000 - 80,000 Frw$	So $f(x) = \frac{48}{x+2}$; $f(-14) = \frac{48}{-14+2} = -4$
5	x+2, $1(1)$ $-14+2$
ii) $\frac{5}{3} \times 60,000$ Frw = 100,000 Frw	
14. Let B(x, y) be any point on the line, then	14. b) The line cuts the $x - axis$ where $y = 0$
the gradient of AB = $\frac{Y - (-3)}{X - (-2)} = \frac{Y + 3}{X + 2}$.	3x + 3 = 0
	3x = 3
a) Therefore, $\frac{Y+3}{x+2} = 3$.	
x+2	$x = \frac{-3}{2}$
y + 3 = 3(x+2)	3
y + 3 = 3x + 6	x = -1
y = 3x + 6 - 3	the line cuts the $x - axis$ at points (-1, 0)
$\mathbf{y} = 3\mathbf{x} + 3$	the fine cuts the $x = axis at points (-1, 0)$
15. a)	
10. a)	
	┫ <mark>┫╋╶┥╡╪┫╡╪╪╪╗╋┪╪╪╪╪╎┨╋┪╼╪╊╸┙╪╪╪╪╪╪╪╪╪╪╪╧╋╖┙╸╴</mark>
B(1-6,4)	
	B(G4)
╶╪╴┠╴╴┥╴┥╴┥╴┥╴┥┑┥┥┥┥┥┥┥┥┥┥┥┥┥┥┥┥╴╿┥╴╿┑╴╴┥╴╴╴╴╴╴╴	AL9, DI
<u>-</u> €	/
<u> </u>	▋▋▐▐▋▋▋▖▋▋ᡛ₵₡₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽
	-

Page 6 of 13

۰,

1

SECTION B

16. a) i)	16. b) The two vectors share a common point
Time(t) in hours 1 4 5 6	A(2, 3), so think of the other points $B(1,6)$
Distance(d) in km 4 16 20 24	$\vec{a} = \begin{pmatrix} -ax \\ ay \end{pmatrix}$
Distance(d) in km 4 16 20 24 ii) Graph 28 24 20 16 12 12 1 12 1 12 1 1 1 1 1 2 1 1 1 1 1 1 1 1	$\vec{a} = \begin{pmatrix} -ax \\ ay \end{pmatrix}$ So $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$ or P (-1, 6) c) As the lines L1 and L2 are parallel, they have the same gradient equal to: $\frac{-4-1}{-1-2} = \frac{-5}{-3} = \frac{5}{3}$ The equation of L2 must be of the form: $y = \frac{5}{3}x + c$ (i) Use the given point (3, -6) to find the value of y intercept c, so substitute into (i) $-6 = \frac{5}{3}x + c$ -6 = 5 + c c = 6 - 5 c = -11 therefore L2 has an equation $\mathbf{y} = \frac{5}{3}x - 11$ 17. b) $p(x) = 0$ $x^3 - 5x^2 + 2x + 8 = 0$ i.e $(x + 1)(x^2 - 6x + 8) = 0$
7. a) $p(x) = x^3 - 5x^2 + bx + a$	or $(x + 1)(x - 2)(x - 4) = 0$
$p(x)$ is divisible by $x + 1 \Rightarrow p(-1) = 0$.e $-1-5 - b + a = 0$ or $a - b = 6$ (i)	$\mathbf{x} = -1$
The remainder of the division of $p(x)$ by $x - 1 = 6$	or $\mathbf{x} = 2$
$(1) = 1 - 5 + b + a = 6 \text{ or } a + b = 10(2)$ $) + (2) \Rightarrow 2a = 16$	or $\mathbf{x} = 4$
= 8, b = 2	

Page 8 of 131

20. a)

۰.

Frequency (f)	Midpoints (x)	fx
6	14.5	87
3	24.5	735
12	34.5	414
14	44.5	623
10	54.5	545
5	64.5	322.5
1	74.5	74.5
∑ f = 51		∑ fx = 2139.5
	6 3 12 14 10 5 1	$ \begin{array}{c ccccc} 6 & 14.5 \\ 3 & 24.5 \\ \hline 12 & 34.5 \\ \hline 14 & 44.5 \\ \hline 10 & 54.5 \\ \hline 5 & 64.5 \\ \hline 1 & 74.5 \\ \end{array} $

b) The mean mark, $\bar{x} = \frac{\sum fx}{\sum f} = \frac{2139.5}{51} = 41.95$

c) The modal class is 40 - 49 because it has a higher frequency of 14 than others.

END